If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7^x=(1/49)^(x+3)
We move all terms to the left:
7^x-((1/49)^(x+3))=0
Domain of the equation: 49)^(x+3))!=0We add all the numbers together, and all the variables
x∈R
7^x-((+1/49)^(x+3))=0
We multiply all the terms by the denominator
7^x*49)^(x+1+3))-((=0
We add all the numbers together, and all the variables
7^x*49)^(x+4))-((=0
We add all the numbers together, and all the variables
7^x*49)^(x=0
Wy multiply elements
343x^2=0
a = 343; b = 0; c = 0;
Δ = b2-4ac
Δ = 02-4·343·0
Δ = 0
Delta is equal to zero, so there is only one solution to the equation
Stosujemy wzór:$x=\frac{-b}{2a}=\frac{0}{686}=0$
| 6=12-x/3 | | -4x+(-9)x+19=15+10 | | 102=1.2•w | | 3x+x+75=180 | | -4=8-2/3*x | | T(n)=2(n+1) | | 2x+x=+10+11 | | 300=51•p | | -4=8-2/3x | | 5z-2=28 | | -x/4+5=9 | | -2x+9=1/3x-26 | | 0.005=wX12 | | 12-6x=-4x+18 | | 0.005=w•12 | | 68*35*d=30940 | | 5x+1+1=x-6/4 | | 8p+9=7p | | T(n)=100-n | | 2(2x+6)=3(2x+3) | | -3(x-4)=5(4x-1) | | 7=4/z-1 | | 2(8x+6)=3x-9 | | 500=b30/3 | | 500=b(30)/3 | | -5(3x-7)=2(2x-5) | | (1/3)x1=60-(1/2)x2 | | 8x+1=5(5x-3) | | -5(9x+3)=5x-9 | | 8x-3=7x+12/2 | | (25+-1x)(-7=x) | | 8x-7=3(x+4) |